

 Navigation

 	
 index

 	flask-bitmapist 0.1.2 documentation

Flask-Bitmapist

Flask-Bitmapist is a Flask extension that creates a simple interface to the Bitmapist [https://github.com/Doist/bitmapist] analytics library.

Events are registered with the name of the event (e.g., “user:logged_in”) and the object id (e.g., the logged in user’s id).

	There are four different ways to register events from your Flask app:

	
	Call a function decorated with the @mark() decorator

	Use the Bitmapistable mixin (note: current ORM support is limited to SQLAlchemy)

	With the Flask-Login extension, user login/logout will register corresponding events automatically

	Call the mark_event() function directly

To use the @mark() decorator:

@mark('user:reset_password', user.id)
def reset_password():
 pass

To use the Bitmapistable mixin:

from flask_bitmapist import Bitmapistable

class User(db.Model, Bitmapistable):
 pass

If you are using Flask-Login, “user:logged_in” and “user:logged_out” events will be registered automatically on user login and user logout, respectively:

>>> flask_login.login_user(user)
>>> flask_login.logout_user()

You can also call the mark_event() function directly:

>>> mark_event('user:action_taken', user.id)

Installation

Install the extension using pip:

$ pip install flask-bitmapist

Quickstart

Initialization

Marking a user-based event is very simple with Flask-Bitmapist.

Begin by importing FlaskBitmapist and initializing the FlaskBitmapist application (this will need to be a Flask app):

from flask import Flask
from flask_bitmapist import FlaskBitmapist

create Flask app object
app = Flask(__name__)

initialize flask_bitmapist with the app object
flaskbitmapist = FlaskBitmapist()
flaskbitmapist.init_app(app)

Ensure that Redis is running; you can specify a port (default: 6379) with the --port flag:

$ redis-server

You are then free to use whichever method(s) you find best suited to your application for marking and registering events.

Configuration Options

	Configuration Options
	Description
	Default

	BITMAPIST_REDIS_URL
	Location where Redis server is running
	“redis://localhost:6379”

	BITMAPIST_REDIS_SYSTEM
	Name of Redis system to use for Bitmapist
	“default”

	BITMAPIST_TRACK_HOURLY
	Whether to track events down to the hour
	False

	BITMAPIST_DISABLE_BLUEPRINT
	Whether to disable registration of the default blueprint
	False

Usage

Decorator

Usage of the @mark() decorator can be useful when you want to track interactions that do not deal directly with the database model.

To use, import the decorator and attach it to the function, providing the event name and user id:

from flask_bitmapist import mark

@mark('index:visited', current_user.id)
def index():
 return render_template('index.html')

Mixin

The mixin can be used to track when a user object is created, updated, or deleted. It interacts directly with the ORM to register events on insert, update, or delete.

To use, import the mixin and extend the desired class with it:

from flask_bitmapist import Bitmapistable

class User(db.Model, Bitmapistable):
 id = db.Column(db.Integer, primary_key=True)

The event “user:created” will then be registered when a new user is instantiated and committed to the database:

user = User()
db.session.add(user)
db.session.commit()

Similarly, “user:updated” and “user:deleted” will be registered for a given user on updating and deleting, respectively.

Flask-Login

The Flask-Login extension is a common means of user management for many Flask applications. Flask-Bitmapist integrates with this extension to track user login and logout events automatically via Flask-Login’s LoginManager and UserMixin:

from flask_login import LoginManager, UserMixin

class User(UserMixin):
 id = None

login_manager = LoginManager()
login_manager.init_app(app)

Create and log in the user, and the event “user:logged_in” will be registered automatically; the same works for logging out a user and the “user:logged_out” event:

from flask_login import login_user, logout_user

user = User(id=user_id)

login user
login_user(user)

logout user
logout_user()

Function Call

The most raw way to use Flask-Bitmapist is to directly call mark_event():

from flask_bitmapist import mark_event

mark_event('event:completed', current_user.id)

Small Example App

from flask import Flask
from flask_bitmapist import FlaskBitmapist, mark

app = Flask(__name__)

flaskbitmapist = FlaskBitmapist()
flaskbitmapist.init_app(app)

@app.route('/')
@mark('index:visited', 1) # current_user.id
def index():
 """using the mark decorator, the first argument is the event
 and the second is the id of the current_user
 """
 return 'Hello, world!'

if __name__ == '__main__':
 app.run()

Testing

To run the tests, ensure that you have Redis running on port 6399:

$ redis-server --port 6399

Then you can simply run:

$ python setup.py test

To seed fake data for testing, run:

$ python scripts/seed.py

API

	
flask_bitmapist.utils.get_event_data(event_name, time_group='days', now=None, system='default')

	Get the data for a single event at a single event in time.

	Parameters:	
	event_name (str) – Name of event for retrieval

	time_group (str) – Time scale by which to group results; can be days,
weeks, months, years

	now (datetime) – Time point at which to get event data (defaults to
current time if None)

	system (str) – Which bitmapist should be used

	Returns:	Bitmapist events collection

	
flask_bitmapist.utils.get_cohort(primary_event_name, secondary_event_name, additional_events=[], time_group='days', num_rows=10, num_cols=10, system='default', with_replacement=False)

	Get the cohort data for multiple chained events at multiple points in time.

	Parameters:	
	primary_event_name (str) – Name of primary event for defining cohort

	secondary_event_name (str) – Name of secondary event for defining cohort

	additional_events (list) – List of additional events by which to filter
cohort (e.g., [{'name': 'user:logged_in',
'op': 'and'}])

	time_group (str) – Time scale by which to group results; can be days,
weeks, months, years

	num_rows (int) – How many results rows to get; corresponds to how far
back to get results from current time

	num_cols (int) – How many results cols to get; corresponds to how far
forward to get results from each time point

	system (str) – Which bitmapist should be used

	with_replacement (bool) – Whether more than one occurence of an event
should be counted for a given user; e.g., if
a user logged in multiple times, whether to
include subsequent logins for the cohort

	Returns:	Tuple of (list of lists of cohort results, list of dates for
cohort, primary event total for each date)

	
flask_bitmapist.utils.chain_events(base_event_name, events_to_chain, now, time_group, system='default')

	Chain additional events with a base set of events.

Note: OR operators will apply only to their direct predecessors (i.e.,
A && B && C || D will be handled as A && B && (C || D), and
A && B || C && D will be handled as A && (B || C) && D).

	Parameters:	
	base_event_name (str) – Name of event to chain additional events to/with

	events_to_chain (list) – List of additional event names to chain
(e.g., [{'name': 'user:logged_in',
'op': 'and'}])

	now (datetime) – Time point at which to get event data

	time_group (str) – Time scale by which to group results; can be days,
weeks, months, years

	system (str) – Which bitmapist should be used

	Returns:	Bitmapist events collection

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Cuttlesoft.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	flask-bitmapist 0.1.2 documentation

Index

 C
 | G

C

 	

 	chain_events() (in module flask_bitmapist.utils)

G

 	

 	get_cohort() (in module flask_bitmapist.utils)

 	

 	get_event_data() (in module flask_bitmapist.utils)

 Copyright 2016, Cuttlesoft.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		flask-bitmapist 0.1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Cuttlesoft.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/jelly.png

